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HOUSEKEEPING

o The session will be recorded and made 
available upon request

 If you don’t want your image/voice recorded, please make use of the chat

o Schedule:
09:30 – 10:45 Welcome and Introduction, Guided Code Walkthrough

10:45 – 11:00 Break 

11:00 – 12:30 Using AI assistance, Group practical and problem solving, 
Peer Review
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SESSION STRUCTURE

o Python setup and coding standards

o Data exploration and visualisation

o Indicator extraction and cleaning

o Derived variables and proxy outcomes

o AI coding assistance

o Final group problem + peer review
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INSTALLING PYTHON & SPYDER

o Recommended: Install Anaconda (www.anaconda.com)

o Includes Python, Spyder IDE, and libraries

o Alternatively: install Python and use pip to install Spyder

o Use conda or pip for package management

o Create virtual environments for dependency isolation
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PYTHON LIBRARIES

A library is a collection of pre-written code that adds extra tools 
or shortcuts to Python

Popular libraries we’ll use today:

  pandas – Work with tables (like Excel or R dataframes). Load, clean, filter, and 
summarise data.

  numpy – Fast calculations on numbers, arrays, and matrices. Often used behind 
the scenes by pandas.

  matplotlib – Create charts and figures. Very flexible, like a plotting toolkit.

  seaborn – Easier, cleaner plotting. Built on matplotlib but designed for statistics.

R equivalents: pandas = dplyr, numpy = matrixStats, matplotlib & 
seaborn = ggplot2.
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CLEAN AND REPRODUCIBLE CODE

o Organise by step: load → clean → analyse → export

o Comment why, not just what

o Avoid repetition: use loops or functions

o Test as you go: use Spyder’s console + Variable Explorer

o Stick to core tools: pandas for data, seaborn for plots

o Write for others: use clear variable names (hourly_pay, not 

hp)
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TIMING CODE AND WORKING 
EFFICIENTLY

o Use %timeit in Spyder to test performance of operations

o Helpful for understanding bottlenecks in large datasets

o For longer scripts, use time.time() to benchmark sections

o Optimise only where performance matters
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FROM PYTHON TO R – WHEN AND WHY

o R is powerful for modeling: survey design, imputation, 

mixed models

o Export clean data from Python with df.to_csv(...)

o Check for missing codes (-99) and label categories 

clearly

o You may want to use Python for cleaning, R for modeling
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USING AI FOR PYTHON HELP

o Use it for syntax, cleaning snippets, or refactoring

o Don’t use it to run full analyses without review

o Be specific: describe your data and your goal clearly

o Use AI tools only with non-sensitive data or documentation

o Review AI code like student work: Is it correct? Clear? Scalable?
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