
PROGRAMMING
WITH PYTHON
Using ASHE-Census Synthetic Data

Dr Kathyrn R Fair

1KFAIR@TURING.AC.UK

HOUSEKEEPING

o The session will be recorded and made
available upon request

 If you don’t want your image/voice recorded, please make use of the chat

o Schedule:
09:30 – 10:45 Welcome and Introduction, Guided Code Walkthrough

10:45 – 11:00 Break

11:00 – 12:30 Using AI assistance, Group practical and problem solving,
Peer Review

KFAIR@TURING.AC.UK 2

SESSION STRUCTURE

o Python setup and coding standards

o Data exploration and visualisation

o Indicator extraction and cleaning

o Derived variables and proxy outcomes

o AI coding assistance

o Final group problem + peer review
3KFAIR@TURING.AC.UK

INSTALLING PYTHON & SPYDER

o Recommended: Install Anaconda (www.anaconda.com)

o Includes Python, Spyder IDE, and libraries

o Alternatively: install Python and use pip to install Spyder

o Use conda or pip for package management

o Create virtual environments for dependency isolation

4KFAIR@TURING.AC.UK

http://www.anaconda.com/

PYTHON LIBRARIES

A library is a collection of pre-written code that adds extra tools
or shortcuts to Python

Popular libraries we’ll use today:

 pandas – Work with tables (like Excel or R dataframes). Load, clean, filter, and
summarise data.

 numpy – Fast calculations on numbers, arrays, and matrices. Often used behind
the scenes by pandas.

 matplotlib – Create charts and figures. Very flexible, like a plotting toolkit.

 seaborn – Easier, cleaner plotting. Built on matplotlib but designed for statistics.

R equivalents: pandas = dplyr, numpy = matrixStats, matplotlib &
seaborn = ggplot2.

5KFAIR@TURING.AC.UK

CLEAN AND REPRODUCIBLE CODE

o Organise by step: load → clean → analyse → export

o Comment why, not just what

o Avoid repetition: use loops or functions

o Test as you go: use Spyder’s console + Variable Explorer

o Stick to core tools: pandas for data, seaborn for plots

o Write for others: use clear variable names (hourly_pay, not

hp)

6KFAIR@TURING.AC.UK

TIMING CODE AND WORKING
EFFICIENTLY

o Use %timeit in Spyder to test performance of operations

o Helpful for understanding bottlenecks in large datasets

o For longer scripts, use time.time() to benchmark sections

o Optimise only where performance matters

7KFAIR@TURING.AC.UK

FROM PYTHON TO R – WHEN AND WHY

o R is powerful for modeling: survey design, imputation,

mixed models

o Export clean data from Python with df.to_csv(...)

o Check for missing codes (-99) and label categories

clearly

o You may want to use Python for cleaning, R for modeling

8KFAIR@TURING.AC.UK

USING AI FOR PYTHON HELP

o Use it for syntax, cleaning snippets, or refactoring

o Don’t use it to run full analyses without review

o Be specific: describe your data and your goal clearly

o Use AI tools only with non-sensitive data or documentation

o Review AI code like student work: Is it correct? Clear? Scalable?

9KFAIR@TURING.AC.UK

	Slide 1: Programming with Python
	Slide 2: Housekeeping
	Slide 3: Session Structure
	Slide 4: Installing Python & Spyder
	Slide 5: Python Libraries
	Slide 6: Clean and Reproducible Code
	Slide 7: Timing Code and Working Efficiently
	Slide 8: From Python to R – When and Why
	Slide 9: Using AI for Python Help

