
User guide: Synthetic data tool

Generating low fidelity synthetic data with BIT’s Python tool

Easier and safer synthetic data in 4 steps

1

Many tools exist to generate synthetic data. This tool’s
specific benefit is that it only allows you to generate low
fidelity data: the safer, lower risk form of synthetic data.

And it works out of the box: just point it at your data set
and in just four steps you’re creating.

Skip ahead to Python step-by-step instructions

2

Background

What is synthetic data?
Synthetic data is a randomly generated version of a data set that follows the structure and
some of the patterns found in the original data set. “Each piece of information in the data set
is meant to be plausible (e.g., an athlete’s height will usually be between 1.5 and 2.2 metres,
and would never be 1 kilometre), but it is chosen randomly from the range of possible values,
not by pointing to any original individual in the data set. Data that is generated in this way
reveals very little, if anything, about any individual in the original data set, but still represents
the data well as a whole.”1

Why use synthetic data?

Data that researchers use often contains potentially identifying and/or sensitive information
about individuals. While access to such data can be granted, obtaining it is time consuming,
often causing long delays for projects. It’s also sometimes unclear ahead of time whether the
information that a researcher is interested in will be present in the requested data set, which
can lead to further delays and complications.

Synthetic data that preserves some qualities of the original data without reproducing the data
corresponding to actual individuals can be a way around these problems. Because synthetic
data doesn’t exactly reproduce the records of any individuals, synthetic data doesn’t need to
have such stringent access requirements. This means that it can be used for testing analysis
code or (in the case of high fidelity synthetic data) for exploratory analysis while a researcher
waits for access to the real data to be granted.

Low-fidelity data preserves privacy, reduces paperwork burdens and
speeds up project timelines

Synthetic data comes on a scale from low fidelity to high fidelity, based on how many
statistical relationships present in the original data are also present in the synthetic data.
Table 1 below illustrates what we mean by low and high fidelity synthetic data. Very high
fidelity synthetic data may be subject to access controls as stringent as that of real data as it
resembles it so closely; low fidelity synthetic data does not necessarily require this as the
relationships preserved may be only the format of the data or the statistical relationships
present in individual columns and not the relationships between them.

1 Calcraft et al. (2021) ‘Accelerating Public Policy Research with Synthetic Data’ BIT report page 6.
Available at:
https://www.adruk.org/fileadmin/uploads/adruk/Documents/Accelerating_public_policy_research_with_
synthetic_data_December_2021.pdf.

3

https://www.adruk.org/fileadmin/uploads/adruk/Documents/Accelerating_public_policy_research_with_synthetic_data_December_2021.pdf
https://www.adruk.org/fileadmin/uploads/adruk/Documents/Accelerating_public_policy_research_with_synthetic_data_December_2021.pdf

The BIT synthetic data tool is a tool intended for producing low fidelity synthetic data.
Because it doesn’t preserve the statistical relationships between columns, synthetic data
produced by this tool has a low risk of reproducing records resembling real people or being
disclosive in other ways. However, it reproduces the structure of the dataset, including
erroneous values. This means that it’s suitable for use as test datasets that can be released
to researchers and analysts so that they can test their analysis code while waiting to be
granted access to the real data.

Low fidelity synthetic data might also be used in the early stages of training researchers and
analysts on how to use specific data sets. Because the only correct statistics in the synthetic
data are the statistical distributions within each column, it won’t be very useful if the intent of
the training is to uncover what correlations are present in the data. But it should be suitable
for training intended to introduce researchers and analysts to the general characteristics and
structure of the data set and its quirks.

Low and high fidelity synthetic data

Table 1: At-a-glance comparison of original, high-fidelity and low-fidelity synthetic data.2

Original data High-fidelity synthetic data Low-fidelity synthetic data

Height and weight of every
athlete at the 2016
Olympics.

● Every point
corresponds to a
real person.

● Weight increases
with height, on
average.

Each point is randomly
generated from the general
relationship between
height and weight at the
2016 Olympics.

● No points
correspond to a
real person.

● Weight increases
with height, on
average.

Each point is randomly
generated from the general
statistics of height and the
general statistics of
weight at the 2016
Olympics.

● No points
correspond to a
real person.

● No particular
relationship between
height and weight.

2 Simplified from page 8 of Calcraft et al. (2021) ‘Accelerating Public Policy Research with Synthetic
Data’ BIT report. Available at:
https://www.adruk.org/fileadmin/uploads/adruk/Documents/Accelerating_public_policy_research_with_
synthetic_data_December_2021.pdf.

4

https://www.adruk.org/fileadmin/uploads/adruk/Documents/Accelerating_public_policy_research_with_synthetic_data_December_2021.pdf
https://www.adruk.org/fileadmin/uploads/adruk/Documents/Accelerating_public_policy_research_with_synthetic_data_December_2021.pdf

BIT’s tool makes creating low-fidelity data easier
This tool generates low fidelity synthetic data. This data preserves the structure of the
original datafile and generates data for each column based on the statistical distribution of
values in that column alone (i.e. univariate statistics only).

This tool removes the statistical relationships between columns. This means that strange
combinations of values are possible for individual records. For example, if there are columns
for age and date of birth in a data set whose contents should be up to date for the year of
2015, it might contain a record where a five year old was born in 1900. No correlations
between values in different columns are intentionally reproduced. This reduces the risk of
accidentally reproducing data corresponding to real people.

Synthetic data produced by this tool should be used only to test analysis code, and never
for final analyses. It only crudely resembles the real data and cannot substitute for it. It can,
however, help test whether analysis code works during the early stages of a project while
waiting for access to the real data to be granted.

Low fidelity data still need disclosure processes
Don’t assume that undesired features of the original data set won’t appear in the
output: check that they don’t!

While synthetic data generated with this tool will not intentionally reproduce features of the
original data that might reveal sensitive or private information, it should not be released
without first making sure that these features have not been reproduced accidentally. We
therefore recommend that some kind of disclosure process should be in place for this data.

Why is disclosure control needed?

While low-fidelity data reduces risk, it does not eliminate it. Some things to consider before
release:

● ✅✅ Misclassification of a column by the script could lead to the reproduction of
personal data because it was assumed to be a category or column heading, and was
therefore included in the output data.

○ All text or category based columns (and any numerical columns with
occasional category values that indicate that are missing, for example) should
be double-checked to ensure that they only output actual categories that are
safe to release (e.g. occupation categories like “teacher”, status categories
like “inactive”, missing indicators like “-” or “missing”).

● 🔒The mere presence of a column or category in a data set may constitute
private or sensitive information, e.g. a synthetic data set reveals or suggests that
“this organisation holds this type of data about these types of individuals”, which may
not always be appropriate to release.

5

● 1⃣ 1⃣ 1⃣ If all values of a column are identical (e.g. an ‘Age’ column for a sample
where everyone is 50 years old) then the synthetic data output for that column will be
identical with the real data for that column. This could be disclosive.

○ Sometimes more subtle relationships from the original data (e.g. associations
of ‘Race’ and ‘Sex’ in some kinds of data) might be reproduced, and care
should be taken to ensure that this does not lead to disclosure.

● ❗In very rare cases it is possible that, by random chance, individual records
or significant portions of records present in the original data are seen in the
synthetic data, or that the synthetic data contains random correlations that
correspond to correlations in the original data.

○ N.B. Even if released, neither of these situations would constitute any
evidence that the original row or correlation was present in the original data
set. The original row or correlation was not used to generate the synthetic
row(s), it occurred by coincidence. It may still be alarming to some viewers of
the data and could be worth manually removing.

It is likely that this short list doesn’t cover all possible ways of accidentally reproducing
features of the original data. Because of this we recommend that the disclosure process
should be as rigorous and proportionate as possible prior to release of the data.

Misconfiguration of the input data file or the tool may also result in the reproduction of
records or significant portions of records.

6

Step-by-step instructions
Things you will need to have installed on your computer:

● Python, preferably Python 3.
● Two common libraries (pandas and numpy).
● A software tool for viewing, editing and running Python notebooks, such as VSCode

or Jupyter.
● Optionally: the library pyreadstat, if you’re intending to read in .sav format files.

The latest version of the tool can be downloaded from here. It will be in the form of a3

compressed archive file under the header ‘Assets’. There are two choices of file, both named
Source Code.

● If your operating system is Linux-based, download the file ending in .tar.gz.
● If you are using Windows or Mac OS instead, download the file ending in .zip.
● Using your computer’s file manager, go to the directory in which you downloaded the

file.
● If your operating system is Linux or Windows, right click on the file and select ‘Extract

Here’ or ‘Extract All…’ in order to extract the files into an uncompressed directory.
● If you are working in Mac OS, double click on the file and an uncompressed directory

containing the files will be created.
● You will find the notebook file BIT_+_ADR_UK_synth_data.ipynb in this directory.

We will now take you through the four steps:

1. Check your system can run it.
2. Point it at your data set.
3. Run it.
4. Check it.

Check your system can run it
This tool consists of a Python notebook. It will require a version of Python; a
software tool for viewing, editing and running Python notebooks; and the

installation of just two very common Python libraries in order to run.

3 An older version of the tool hosted on Google colab is available from here. If you want to see the
notebook quickly then please use the older version. As this is a web-hosted version of the tool, do not
attempt to upload any data to the colab space.

7

https://github.com/BehaviouralInsights/BIT-ADRUK-synthetic-data-tool/releases/latest
https://www.adruk.org/news-publications/news-blogs/report-investigates-how-synthetic-data-can-be-used-in-government/

Python version

This notebook assumes that you are using Python 3. Some features may not work as written
for Python 2 and so will require customisation. In what follows we’ll assume that you already
have a version of Python installed in the development environment that you’re using.

Viewing, editing and running Python notebooks

Python notebooks (also known as ipython or Jupyter notebooks) require special software
tools so that you can read, edit and run them. There are several options available, such as:

● Jupyter
● VSCode with Jupyter extensions installed

In what follows, we’ll assume that you already have one of these tools installed in the
development environment you’re using.

Required libraries

This notebook makes use of the following external libraries:

● numpy
● pandas
● pyreadstat (this module is optional and only used if you have Python 3 and wish to

process a .sav file)

In some environments, you’ll need to install these libraries prior to using the tool. Please refer
to the section on Troubleshooting if you need to do this.

Point it at your data set
Go to Section 1: Load in data set in the notebook.

Figure 1 shows the cell where the input file details are set in the tool. You will need to set the
value of file_path.

● file_path should be set to the full path of the file location.

Figure 2 below shows an example of how to specify these variables.

Important notes

● The supported input data file types are
○ 'csv',
○ 'txt',
○ 'xlsx',
○ 'xls',

8

○ 'sas7bdat',
○ 'sav',
○ 'dta'
○ and 'pkl'.

1) put in your full file path here, e.g.

"C:\\Users\\FirstName.LastName\\Downloads\\General\\data.csv"

file_path = ""

Figure 1: Where to specify the input file location.

● The tool will automatically identify the type of file based on its suffix, i.e. a file called
example.csv will be identified as a csv file and a file called example.xls will be
identified as an Excel file.

● For some formats (such as csv) the tool assumes that the first line of the data file is a
header containing the names of each column.

○ Caution: If the data file contains no header and the first line is the first record
of the data set to be processed, you will need to customise how the tool reads
in data files. Otherwise the tool will output the first record as the column
headings, which could disclose private data.

○ Similarly, if you wish the tool to start reading in data from a record other than
the first (e.g. from the fifth record onwards) the tool will need to be
customised.

1) put in your full file path here, e.g.

"C:\\Users\\FirstName.LastName\\Downloads\\General\\data.csv"

file_path = "..\\data\\california_housing_train.csv"

Figure 2: Specifying the input file location.

Advanced Configuration: SQL queries and database pipelines

Sometimes the data you wish to generate synthetic data from will not be available in a file
format, because you are reading it in from a database. To access the data you will need to
query the database (usually using a language called SQL) and translate the results into

9

something that Python can understand. This usually requires using an additional library and
the functions it contains to communicate with the database.

The precise way this is done will depend on the library you or your organisation prefers to
use and the functions that library contains. Because of this, this advice is very general.

● Leave file_path=”” in the cell identified by Figure 1.
● Uncomment all the code in the two cells under the heading ‘Using a data pipeline’.
● Replace LIBRARY with the name of the library you are using.
● Replace PIPELINE_QUERY with the function that you are using to access the

pipeline. This function will usually contain the database query as input.
● Replace OUTPUT_FILE_NAME with the name of the file you want to contain the

synthetic data. Do not include a file suffix.

Advanced Configuration: Linking Datasets

This tool produces synthetic data for single table data sets (‘flat files’). If you wish to generate
linked data using this tool without modifying it, you can:

● Link the data sets so that they form a single table, and use this as input for the tool.
The output will be a single table that can be decomposed into the component tables.

● Note that this approach will be limited by the size of your computer’s memory. If the
single table is very large then it may not work.

It is also in principle possible to produce linked synthetic data sets without linking them
together first.

● For tables that are linked in a simple fashion where a primary key in one table is a
foreign key in another, it should be possible to adapt the tool so that the primary key
values from the first table are reproduced with the appropriate frequencies in the
foreign key table of the second table. The details of how to do this are beyond the
scope of this guide but if you attempt this then please let us know!

● For tables from originally distinct data sources that are linked through a linking table,
adapting the tool is more difficult and may have to be tailored to the specifics of the
data set at hand. How to do this is also beyond the scope of this guide.

10

Run it

Figure 3: Running all cells in VSCode. Click on the
option in the blue circle

The next step is to run all cells in the notebook. There are a number of different ways to do
this depending on the environment you’re working in (in fact, many environments have
several different ways of doing this). Some suggested methods are given below, but if you’re
very familiar with a particular environment you may have a preferred alternative that you
want to use.

● JupyterLab: press Esc to go to Command Mode, Ctrl+a to select all cells,
Shift+Enter to run all selected cells.

● VSCode: click the Run All button, as shown in Figure 3.

Once you know how to run all the cells in the notebook, follow the following steps to generate
synthetic data:

● Run all cells in the notebook. For very large data files this may take some time to
complete.

● If you are using an Excel spreadsheet as the input file, it is possible that a warning
message ‘SystemExit: 0’ will be issued by the notebook. This indicates that the
program is working correctly and has no implications for the results. Go to this
section, which discusses how the tool processes Excel spreadsheet data.

● Go to Section 3: Generate Synthetic Data in the notebook.
● The data read in from the input file is displayed beneath the cell in Figure 4. Check

that it makes sense and matches the data in the original file.
● Information about each column and the data it carries is displayed below the cell that

starts with ‘# save original column names’ (Figure 5). Each column is displayed as an
entry in a Python list that begins with the column name and ends with the column
type (numeric, categorical, datetime, string, or NA), so that person_name_string
corresponds to the column ‘person_name’ which has the type string.

11

Figure 4: Displaying the input data.

Figure 5: Displaying column classification data.

12

Figure 6: Location of the synthetic data summary.

○ If, on examining the output, you disagree with the classification that the
algorithm has assigned to the column, you may correct this using the optional
step described in the section Correcting the variable classification below.

● If the tool has executed without any problems, you should see a summary of the first
few lines of the synthetic data it has generated below the cell depicted in Figure 6.

● The output file containing the synthetic data will be present as
file_name_synthetic.csv, where file_name is taken from the name of the file in
file_path, which was set in the section Setting up the input file.

Advanced Configuration: Saving files in different locations

Sometimes you will need to save the synthetic data to a location other than the current
working directory. If you wish to save in a different directory that is on your computer or that
your computer can access, modify the variable data_location in the final cell as follows:

● data_location = DIRECTORY_PATH + file_name + ‘_synthetic’
● Here, DIRECTORY_PATH should be the path to the directory where you want to save

the synthetic data. If it’s absent (which is the default), the synthetic data will be saved
in the same directory as the notebook.

Occasionally, you may need to save to other locations that may not be accessible via a file
path (for example, S3 buckets on Amazon Web Services). This might require further

13

modifications to the notebook that are beyond the scope of this guide: please talk to whoever
is in charge of your system for guidance.

Advanced Configuration: Changing output appearance

The tool gives some limited control over some elements of the synthetic data output. By
changing the values of the variables in the cell beneath the heading ‘Modifying the output
appearance’ we can

● specify how null or NaN data values appear in the synthetic data output by changing
the value of null_string (default value: “”).

● change the decimal precision of all real values in the synthetic data output by
changing the value of numerical_precision (default value: 2).

Correcting the variable classification

original_data =

original_data.rename({"column_to_be_renamed1":"new_column_name1","colu

mn_to_be_renamed2":"new_column_name2"}, axis='columns')

original_data.columns

Figure 7: Cell containing classification correction code.

Figure 7 shows the cell containing the classification correction code. If you wish to correct the
classification of each column:

● First, remove the # symbols at the beginning of each line. This means that the Python
interpreter will no longer ignore them.

● Between the braces { and } in the first line, replace the text with
“column_classification”: “column_new_classification”, where column is the name of
the column, classification is the old classification of the column and
new_classification is the classification you wish to apply to the column.

● An example of how to do this is in Figure 8 below, where we are reassigning the type
of the column ‘housing_median_age’ from ‘categorical’ to ‘numeric’.

● Rerun the script. If the above has been done correctly, you should see a list of
columns beneath this cell containing your corrections.

original_data =

original_data.rename({"housing_median_age_categorical":"housing_median

_age_numeric"}, axis='columns')

original_data.columns

Figure 8: Example of reassigning the type of a column.

14

Generating synthetic data from an Excel spreadsheet

Excel spreadsheets may consist of several different tables on different worksheets. Because
of this, unlike other file formats the tool will follow a different path in the notebook. It will
output a file named file_name_synthetic.xls where file_name is taken from the name of the
file in file_path, which is set in the section Setting up the input file. It will not display any

output within the notebook.

Check it
Important: While the synthetic data is not intended to contain any records
resembling those in the original data, there is no automatic guarantee of this.

It is therefore important to scrutinise the output contained in file_name_synthetic.csv in order
to determine that

● It has not reproduced records that are present in the original data set by chance.
● It has not accidentally reproduced any correlations present in the original data set.
● Sensitive or identifying information present in the dataset has not been included due

to misconfiguration of the tool or for other reasons.
● If there is a column where all values are identical, this column will be identical in both

the synthetic and real data. If it is the case that this contains information about
individuals (e.g. ages in a dataset where all records have a value of 50), this is
potentially disclosive.

● It’s possible that the tool may have misidentified some columns. For example, if there
are a large number of possible values in a categorical field, the tool may misinterpret
the field as being a string or numerical field. To fix this issue, follow the instructions in
the section Correcting the Variable Classification.

The Background section of this guide discusses why you should have a disclosure control
process in place to ensure that the synthetic data does not accidentally reveal sensitive
information. This process should be followed to ensure that the synthetic data can be
released safely.

15

Troubleshooting
Installing missing libraries

This may vary depending on the environment you’re using. There are two package managers
that allow you to install Python libraries, pip and conda. Which to use depends on how
Python has been installed. If it was installed using conda, then you should install packages
using conda and not pip.

If you don’t know which was used to install Python, check with whoever is responsible for
managing your system. They may also be able to install missing libraries for you!

Using pip

To check if numpy and pandas are installed, open a command line terminal window and type:

python -m pip freeze

This will list all the installed Python libraries. If numpy and pandas are on this list, you don’t
have to do anything else. If either or both aren’t on the list, do the following:

For any libraries that are not installed, you should run from the command line:

python -m pip install MISSING_LIBRARY_NAME

from the command line in order to install them. We recommend setting up and using a virtual
environment before installing libraries wherever possible in order to make sure that you’re
always using the same versions of the same libraries for a given task.

Using conda

To check if numpy and pandas are installed, open a command line terminal window and type:

conda list

If numpy and pandas appear on this list, they’re installed and you don’t have to do anything
else. If either or both are not on the list, then for each missing library run

conda install MISSING_LIBRARY_NAME

This should install the missing libraries.

Library compatibility

Older versions of the pandas library are incompatible with more recent versions of the numpy
library. If this problem arises, there are two possible solutions:

16

https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html

● If you are not using a virtual environment: Uncomment the Python code in the cell
under the heading ‘Automated package installation (optional)’. Running the notebook
should now check the compatibility of your libraries before downloading and installing
compatible versions.

● If you are using a virtual environment: Using the requirements.txt file included in the
tool repository, type

python -m pip install -r requirements.txt

Note that you may have to uninstall the previously installed versions of the libraries
first.

17

For advanced users

Can I use a Python script instead of a notebook?
For some workflows using a Python script may be more convenient than using a notebook.
JupyterLab and VSCode all provide options for converting an iPython notebook such as this
tool to a Python script.

Description of functions
In this section we provide a brief overview of the functions defined in Section 2 of the
notebook. This is intended to be useful for users seeking a deeper understanding of the tool
or who wish to customise it.

check_if_datetime(x)

Input

x: Pandas Series

Return

Boolean: True if x is datetime type, False otherwise.

check_if_numeric(x)

Input

x: Pandas Series

Return

Boolean: True if x is numerical type, False otherwise.

identify_variable_type(x)

Input

x: Pandas series

Return

string: “NA” if x is empty; “categorical” if x contains categorical data, “numerical” if x contains
float or integer data, “datetime” if x contains datetime date, “string” otherwise.

18

prepend(list, str)

Input

list: List of strings

str: string

Return

List of strings: each string in list prepended with str.

generate_datetime(min_time, max_time)

Input

min_time: datetime

max_time: datetime

Return

datetime: randomly chosen datetime between min_time (earliest) and max_time (latest).
Currently uses a uniform distribution.

paste0(string, values)

Input

string: string

values: List of numerical values

Return

List of strings: each value in values appended to string (equivalent to R’s paste0 function).

create_synthetic_data(x)

Input

x: Pandas Series

Return

Pandas Series: contains the randomly generated contents of the synthetic data column
corresponding to x depending on the variable type of x.

● NA: An empty series.
● Numeric: Data generated from a normal distribution obtained by extracting the mean

and standard deviation of the original data.

19

● Categorical: Generated from probability distributions obtained by a cross-tabulation of
categories and their observed frequencies.

● Datetime: Date generated from a uniform distribution between the earliest and latest
data recorded.

● String:
○ If entries have roughly the same length, we assume that they have a shared

pattern (e.g. they are a postcode or IP address). For each character position
in the strings we calculate the distribution of characters and from that
randomly select a character for that position in a given entry.

○ If not, we replace the string with placeholder text generated from the phrase
‘sample text’.

20

